矩母函数

矩母函数

定义矩母函数会让我们一些操作变得简单。

随机变量$X$的矩母函数$M(t)$如下定义:

$\begin{aligned} M\left( t \right) \ =\ E\left[ e^{tX} \right] \ =\ \left\{ \begin{array}{l} \sum_x {e^{tx}p\left( x \right)} & 若X离散,p(x)是其分布列\\ \int_{-\infty}^{\infty}{e^{tx}f\left( x \right) dx} & 若X连续,p(x)是其密度函数\\ \end{array}\ \right. \end{aligned}$

其中$t$是任意实数,我们称$M(t)$是矩母函数的原因是,$X$的所有各阶矩都可以从$M(t)$在$t=0$的各阶导数得到。例如:

$\begin{aligned} M'\left( t \right) \ =\ \frac{d}{dt}E\left[ e^{tx} \right] \ =\ E\left[ \frac{d}{dt}\left( e^{tX} \right) \right] \ =E\left[ Xe^{tX} \right] \end{aligned}$

事实上,对与导数和期望两种运算假定是可以交换顺序的,即下述两种情况

$\begin{aligned} \frac{d}{dt}\left[ \sum_x^{}{e^{tx}p\left( x \right)} \right] \ =\ \sum_x^{}{\frac{d}{dt}\left[ e^{tx}p\left( x \right) \right]} \end{aligned}$

$\begin{aligned} \frac{d}{dt}\left[ \int{e^{tx}f\left( x \right) dx} \right] \ =\ \int{\frac{d}{dt}\left[ e^{tx}f\left( x \right) \right] dx} \end{aligned}$

是成立的。

那么$t=0$的时候,就有

$\begin{aligned} M'(0) = E[X] \end{aligned}$

类似的可以得到

$\begin{aligned} M''(t) = \frac{d}{dt} M'(t) = \frac{d}{dt}E\left[ Xe^{tX} \right] \ =\ E\left[ \frac{d}{dt}\left( Xe^{tX} \right) \right] \ =\ E\left[ X^2e^{tX} \right] \end{aligned}$

那么有

$\begin{aligned} M''(0) = E[X^2] \end{aligned}$

归纳的对$M(t)$求$n$次导可得

$\begin{aligned} M^n(t) = E[X^ne^{tx}] \end{aligned}$

从而有

$\begin{aligned} M''(0) = E[X^n], n\geq 1 \end{aligned}$

现在,我们利用它求一些常见分布的矩母函数$M(t)$。注意,一般情况下上述情况是成立的、

参数为$(n,p)$的二项分布

设$X$是参数为$(n,p)$的二项随机变量,则

$\begin{aligned} M\left( t \right) \ =&\ E\left[ e^{iX} \right] \ \\ =& \ \sum_{k=0}^n{e^{tk}\left( \begin{array}{c} n\\ k\\ \end{array} \right) p^k\left( 1-p \right) ^{n-k}}\\ =&\sum_{k=0}^n\left( \begin{array}{c} n\\ k\\ \end{array} \right) \left( pe^t \right) ^k\left( 1-p \right) ^{n-k}\\ =&\left( pe^t+1-p \right) ^n \end{aligned}$

最后一个等式利用二项式定理可以推出,现在,我们对两边求微分可得

$\begin{aligned} M'(t) = n(pe^t+1-p)^{n-1}pe^t \end{aligned}$

因此

$\begin{aligned} E[x] = M'(0) = np \end{aligned}$

对于二阶导,两边求导可得

$\begin{aligned} M''\left( t \right) \ =\ n\left( n-1 \right) \left( pe^t+1-p \right) ^{n-2}\left( pe^t \right) ^2+n\left( pe^t+1-p \right) ^{n-1}pe^t \end{aligned}$

所以

$\begin{aligned} E[X^2] = M''(0) = n(n-1)p^2+np \end{aligned}$

那么我们可以得到方差

$\begin{aligned} \text{Var}\left( X \right) \ =\ E\left[ X^2 \right] -\left( E\left[ X \right] \right) ^2=n\left( n-1 \right) p^2+np-n^2p^2=np(1-p) \end{aligned}$

验证完毕。

参数为$\lambda$的泊松分布

设$X$是服从参数为$\lambda$的泊松随机变量,则

$\begin{aligned} M(t) = E[e^{tX}]=\sum_{n=0}^{\infty}{\frac{e^{tn}e^{\lambda}\lambda ^n}{n!}}\ =\ e^{-\lambda}\sum_{n=0}^{\infty}{\frac{\left( \lambda e^t \right) ^n}{n!}}\ =\ e^{-\lambda}e^{\lambda e^t}\ =\ \exp \left\{ \lambda \left( e^t-1 \right) \right\} \end{aligned}$

它的一阶和二阶矩如下可得

$\begin{aligned} M'(t) =& \lambda e^t\exp{\lambda(e^t-1)}\\ M''(t) =& (\lambda e^t)^2\exp{\lambda(e^t-1)}+\lambda e^t\exp{\lambda(e^t-1)} \end{aligned}$

就有

$\begin{aligned} E[X] =& M'(0) = \lambda\\ E[X^2] =& M''(0) =\lambda^2+\lambda\\ \text{Var}(X) =& E[X^2]-(E[X])^2 = \lambda \end{aligned}$

所以泊松随机变量的期望和方程均为$\lambda $

正态分布

我们首先计算标准正态随机变量的矩母函数,令$Z$是参数为$0,1$的标准正态随机变量

$\begin{aligned} \begin{aligned}M_{Z}(t)&=E[e^{tZ}]\\&=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{tx}e^{-x^{2}/2}dx\\&=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\exp\left\{-\frac{(x^{2}-2tx)}{2}\right\}dx\\&=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\exp\left\{-\frac{(x-t)^{2}}{2}+\frac{t^{2}}{2}\right\}dx\\&=e^{t^{2}/2}\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-(x-t)^{2}/2}dx\\&=e^{t^{2}/2}\end{aligned} \end{aligned}$

因此,标准正态分布的矩母函数为$M_Z(t) = e^{t^2/2}$,而对于一般的正态随机变量,做替换$X = \mu+\sigma Z$即可,其中$\mu$和$\sigma^2$是$X$的期望和方差。$Z$是标准正态分布随机变量。就有

$\begin{aligned} \begin{aligned}M_{X}(t)&=E[e^{tX}]\\&=E[e^{t(\mu+\sigma Z)}]\\&=E[e^{t\mu}e^{t\sigma Z}]\\&=e^{t\mu}E[e^{t\sigma Z}]\\&=e^{t\mu}M_{Z}(t\sigma)\\&=e^{t\mu}e^{(t\sigma)^{2}/2}\\&=\exp\left\{\frac{\sigma^{2}t^{2}}{2}+\mu t\right\}\end{aligned} \end{aligned}$

那么就有:

$\begin{aligned} \begin{aligned}&M_{X}^{\prime}(t)=(\mu+t\sigma^{2})\exp\left\{\frac{\sigma^{2}t^{2}}{2}+\mu t\right\}\\&M_{X}^{\prime\prime}(t)=(\mu+t\sigma^{2})^{2}\exp\left\{\frac{\sigma^{2}t^{2}}{2}+\mu t\right\}+\sigma^{2}\exp\left\{\frac{\sigma^{2}t^{2}}{2}+\mu t\right\}\end{aligned} \end{aligned}$

矩为

$\begin{aligned} E[X] =& M'(0) = \mu\\ E[X^2] =& M''(0) = \mu^2+\sigma^2\\ \text{Var}(X) =& E[X^2]-E([X])^2 = \sigma^2 \end{aligned}$

一个特殊的点是,独立随机变量和的矩母函数等于分别求各自矩母函数后的乘积,我们设两个矩母函数$M_X(t)$和$M_Y(t)$,则$M_{X+Y}(t)$是$X+Y$的矩母函数,则

$$\begin{aligned}\\M_{X+Y}(t)&=E[e^{t(X+Y)}]\\&=E[e^{tX}e^{tY}]\\&=E[e^{tX}]E[e^{tY}]\\&=M_X(t)M_Y(t)\end{aligned}$$

矩母联合函数

接下来,我们将矩母函数推广到两个或者多个随机变量的联合矩母函数,若$X_1,\cdots,X_n$是给定的随机变量序列,它的联合矩母函数$M(t_1,\cdots,t_n)$对实数$t_1,\cdots,t_n$定义:

$\begin{aligned} M(t_1,\cdots,t_n) = E[e^{t_1X_1+\cdots+t_nX_n}] \end{aligned}$

而$X_i$的矩母函数可以在联合矩母函数中定义除了$i$以外的变量为0得到,即

$\begin{aligned} M_{X_i} = E[e^{tX_i}] = M(0,\cdots,0,t,0,\cdots,0) \end{aligned}$

t的位置在第i个变量处。

矩母函数唯一的确定了分布,联合矩母函数也唯一的确定了他们的联合分布,但这个结论的证明暂时不在我们的讨论中。现在,利用结论,则$X_1,\cdots,X_n$互相独立的条件是

$\begin{aligned} M(t_1,\cdots,t_n) = M_{X_1}(t_1)\cdots M_{X_n}(t_n) \end{aligned}$

若$X_1,\cdots,X_n$互相独立,则

$\begin{aligned}M(t_{1},\ldots,t_{n})&=E[e^{(t_{1}X_{1}+\cdots+t_{n}X_{n})}]\\&=E[e^{t_{1}X_{1}}\cdots e^{t_{n}X_{n}}]\\&=E[e^{t_{1}X_{1}}]\cdots E[e^{t_{n}X_{n}}]\quad\text{由独立性得到}\\&=M_{X_{1}}(t_{1})\cdots M_{X_{n}}(t_{n})\end{aligned}$

另一个不同的证明如下:若矩母函数满足上述式子,则联合矩母函数$M(t_1,\cdots,t_n) = M_{X_1}(t_1)\cdots M_{X_n}(t_n) $。另外,由于联合矩母函数唯一的确定了联合分布函数,即

其中$F_{X_i}$为$X_i$的分布函数,由此可得$X_1,\cdots,X_n$是互相独立的,